If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-22x-34=0
a = 7; b = -22; c = -34;
Δ = b2-4ac
Δ = -222-4·7·(-34)
Δ = 1436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1436}=\sqrt{4*359}=\sqrt{4}*\sqrt{359}=2\sqrt{359}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{359}}{2*7}=\frac{22-2\sqrt{359}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{359}}{2*7}=\frac{22+2\sqrt{359}}{14} $
| 5/8x+10=-8 | | (7x)(4x)-200=448 | | 90=4x+x-5 | | -4-y=-15 | | 0.4k+6.1=-5 | | t÷5.8=0.5 | | 6x+7=12-2x | | 8x-3=-3x-91 | | 6(x+1)=3(2x+5)−9 | | 14(t-2)+4t=6(3t+2)-10 | | P^3-2p^2-25p-50=0 | | (x-4/5)=2.5 | | -3/4z+1=6 | | 5x2+60x-415=0 | | -12x+16=4x | | 6x-2=-1x+-2 | | 38p-1+19p=3+41p | | 8x+13=6x-12 | | 7x-2=5(x-8)+2x | | 81x18=18x81 | | 4x5=17 | | 81x18=18x81 | | -3z/4+1=6 | | 30x=33 | | 2|3x-2|=16 | | x-1/x+9=3/7 | | 3/4(1/2x-12)=4/5 | | 2x+4x+15=8x+5 | | X+3x+2x=2940 | | 2x+1(21)=18(4x-3) | | 1/7x+1/4×=22 | | 168=(180*(n-3) |